Intrinsic and extrinsic contributors to subregional thalamic volume loss in multiple sclerosis

Author:

Krijnen Eva A.12ORCID,Salim Karam Elsa1,Russo Andrew W.1,Lee Hansol3,Chiang Florence L.3,Schoonheim Menno M.2ORCID,Huang Susie Y.3,Klawiter Eric C.1

Affiliation:

1. Department of Neurology Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA

2. MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience Amsterdam UMC, Location VUmc Amsterdam The Netherlands

3. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA

Abstract

AbstractObjectiveTo evaluate the intrinsic and extrinsic microstructural factors contributing to atrophy within individual thalamic subregions in multiple sclerosis using in vivo high‐gradient diffusion MRI.MethodsIn this cross‐sectional study, 41 people with multiple sclerosis and 34 age and sex‐matched healthy controls underwent 3T MRI with up to 300 mT/m gradients using a multi‐shell diffusion protocol consisting of eight b‐values and diffusion time of 19 ms. Each thalamus was parcellated into 25 subregions for volume determination and diffusion metric estimation. The soma and neurite density imaging model was applied to obtain estimates of intra‐neurite, intra‐soma, and extra‐cellular signal fractions for each subregion and within structurally connected white matter trajectories and cortex.ResultsMultiple sclerosis‐related volume loss was more pronounced in posterior/medial subregions than anterior/ventral subregions. Intra‐soma signal fraction was lower in multiple sclerosis, reflecting reduced cell body density, while the extra‐cellular signal fraction was higher, reflecting greater extra‐cellular space, both of which were observed more in posterior/medial subregions than anterior/ventral subregions. Lower intra‐neurite signal fraction in connected normal‐appearing white matter and lower intra‐soma signal fraction of structurally connected cortex were associated with reduced subregional thalamic volumes. Intrinsic and extrinsic microstructural measures independently related to subregional volume with heterogeneity across atrophy‐prone thalamic nuclei. Extrinsic microstructural alterations predicted left anteroventral, intrinsic microstructural alterations predicted bilateral medial pulvinar, and both intrinsic and extrinsic factors predicted lateral geniculate and medial mediodorsal volumes.InterpretationOur results might be reflective of the involvement of anterograde and retrograde degeneration from white matter demyelination and cerebrospinal fluid‐mediated damage in subregional thalamic volume loss.

Funder

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3