Affiliation:
1. School of Physics Trinity College Dublin College Green Dublin D02 PN40 Ireland
2. São Paulo State University Araraquara São Paulo 14800‐090 Brazil
3. University of York Heslington York YO10 5DD UK
Abstract
AbstractEntanglement in many‐body systems may display quantum phase transition signatures, and analogous insights are emerging in the study of work fluctuations. Here, the fermionic superfluid‐to‐insulator transition (SIT) is considered and related to its entanglement properties and its work distribution statistics. Using the attractive fermionic Hubbard model with randomly distributed impurities, the work distribution is analyzed under two quench protocols triggering the SIT. In the first, the concentration of impurities is increased; in the second, the impurities' disorder strength is varied. The results indicate that, at criticality, the entanglement is minimized while the average work is maximized. This study demonstrates that, for this state, density fluctuations vanish at all orders, resulting in all central moments of the work probability distribution being precisely zero. For systems undergoing a precursor to the transition (short chains with finite impurity potential) numerical results confirm these predictions, with higher moments further from the ideal results. For both protocols, at criticality, the system absorbs the most energy with almost no penalty in terms of fluctuations: ultimately this feature can be used to implement a quantum critical battery. The impact of temperature on this critical behaviour is also investigated and shown to favor work extraction for high enough temperatures.
Funder
H2020 European Research Council
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献