Work statistics for quantum spin chains: Characterizing quantum phase transitions, benchmarking time evolution, and examining passivity of quantum states

Author:

Lin Feng-Li1ORCID,Huang Ching-Yu2ORCID

Affiliation:

1. Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan

2. Department of Applied Physics, Tunghai University, Taichung, 40704, Taiwan

Abstract

We study three aspects of work statistics in the context of the fluctuation theorem for quantum spin chains up to 1024 sites by numerical methods based on matrix-product states (MPSs). First, we use our numerical method to evaluate the moments/cumulants of work done by the sudden quench process on the Ising or Haldane spin chains, and we study their behaviors across the quantum phase transitions. Our results show that, up to the fourth cumulant, the work statistics can indicate the quantum phase transition characterized by the local order parameters but barely for purely topological phase transitions. Second, we propose to use the fluctuation theorem, such as Jarzynski's equality, which relates the real-time correlator to the ratio of the thermal partition functions, as a benchmark indicator for the numerical real-time evolving methods. Third, we study the passivity of ground and thermal states of quantum spin chains under some cyclic impulse processes. We show that the passivity of thermal states and ground states under the Hermitian actions is ensured by the second laws and variational principles, respectively, and we also verify this by numerical calculations. In addition, we also consider the passivity of ground states under non-Hermitian actions, for which the variational principle cannot be applied. Despite that, we find no violation of passivity from our numerical results for all the cases considered in the Ising and Haldane chains. Overall, we demonstrate that the work statistics for the sudden quench and impulse processes can be evaluated precisely by the numerical MPS method to characterize quantum phase transitions and examine the passivity of quantum states. We also propose to exploit the universality of the fluctuation theorem to benchmark the numerical real-time evolutions in an algorithmic and model-independent way. Published by the American Physical Society 2024

Funder

National Science and Technology Council

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3