Disclosing the fatigue deformation mechanisms of different types of poly (ethylene terephthalate) industrial fibers on the base of the multiscale structural evolutions

Author:

Chen Kang12,Song Minggen3,Jiang Quan3,Ji Hong3,Zhang Yumei4ORCID,Wang Huaping4

Affiliation:

1. College of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China

2. Zhejiang Provincial Innovation Center of Advanced Textile Technology Shaoxing China

3. Zhejiang Unifull Industrial Fiber Co., Ltd. Huzhou China

4. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University Shanghai China

Abstract

AbstractThe fatigue behavior of poly (ethylene terephthalate) industrial fibers is a key issue in their long‐term service for engineering applications. To have a comprehensive understanding of the fatigue behavior, the high‐tenacity (HT) and low‐shrinkage (LS) PET fibers were selected to analyze the room temperature dynamic fatigue properties with different stress. Various techniques such as WAXD/SAXS and FTIR were employed to study the multiscale structure changes to disclose the fatigue mechanisms. Although the crystalline structure including orientation and crystallinity did not change, the amorphous structures varied with fatigue stress. The HT fiber exhibited a higher fatigue recovery ratio. The slight increase in amorphous orientation, and amorphous thickness was attributed to the oriented coiled molecular chains during tensile fatigue stress. In contrast, the LS fiber experienced plastic fatigue deformation with a lower recovery ratio. The molecular chains in the large amorphous domain are easily extended and oriented under tensile loading, increasing amorphous orientation and lamellar thickness. The fatigue mechanism for the LS fiber involved the conformation transition from gauche to trans conformers and a higher proportion of irreversible amorphous regions were formed. It is indicated that developing industrial filaments with small amorphous orientation and content is crucial to improving their fatigue resistance.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3