Recycling of poly(lactic acid)/poly(butylene succinate) (PLA/PBS) blends with high amounts of secondary raw material

Author:

Koca Nazan1,Aversa Clizia1,Barletta Massimiliano1ORCID

Affiliation:

1. Dipartimento di Ingegneria Industriale, Elettronica e Meccanica Università degli Studi Roma Tre Rome Italy

Abstract

AbstractIn this study, the mechanical recycling of poly(lactic acid)/poly(butylene succinate) (PLA/PBS)‐based formulations with additives was investigated. A simulation of mechanical recycling was performed using secondary raw materials in the analyzed formulations (at very high levels >30%). The recycling process was simulated by repeating extrusion cycles on the compound to produce aging under accelerated conditions, similar to those that normally occur during the extrusion compounding of the bioplastic material. The formulations were characterized by using differential scanning calorimetry (DSC), heat deflection temperature (HDT), melt flow rate (MFR), Fourier transform infrared spectroscopy (FTIR) and UV–vis spectroscopy. The aim of the work was to study the efficiency of a multi‐epoxy chain extender in mechanical recycling of PLA/PBS blends. The results showed that the use of secondary raw materials did not cause drastic changes in the thermal properties and chemical composition of the blends, which indicates that they are suitable for manufacturing bioplastic blends. Specifically, MFR results showed a major efficiency of the chain extender in samples having PLA as primary polymeric phase, whereas no change was observed in formulations where PBS is the main phase with the addition of a higher amount of chain extender.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3