From seasonal field study to surrogate modeling: Investigating the biomechanical dynamics of Elymus sp. in salt marshes

Author:

Keimer Kara1ORCID,Kind Felix1,Prüter Inga1,Kosmalla Viktoria1,Lojek Oliver1,Schürenkamp David1,Prinz Markus2,Niewerth Stephan3,Aberle Jochen3,Goseberg Nils14ORCID

Affiliation:

1. Leichtweiß‐Institute for Hydraulic Engineering and Water Resources, Division of Hydromechanics, Coastal and Ocean Engineering Technische Universität Braunschweig Braunschweig Germany

2. Institute for Chemistry and Biology of the Marine Environment Carl von Ossietzky Universität Oldenburg Oldenburg Germany

3. Leichtweiß‐Institute for Hydraulic Engineering and Water Resources, Division of Hydraulic Engineering and River Morphology Technische Universität Braunschweig Braunschweig Germany

4. Coastal Research Center Joint Central Institution of Leibniz Universität Hannover and Technische Universität Braunschweig Hannover Germany

Abstract

AbstractSalt marshes have been studied in the context of ecosystem services they can provide for coastal protection. In this study, monthly field campaigns focusing on Elymus spp. and its biomechanical properties were conducted from December 2021 to December 2022 on the German Barrier Island Spiekeroog. A total of 1390 specimens were investigated to determine their growth length, out of which 418 specimens were investigated mechanically with three‐point bending tests to determine their biomechanical properties. To evaluate the interaction of hydraulic loads and vegetation, the challenge of modeling biomechanical plant properties to scale is addressed by using resin 3D printing with flexible material, while focusing on the materials mechanical properties. Based on the field data acquired and additional literature (adding up to 1959 measurements), a cylindrical plant model with an outer diameter of (scale 1 : 1) was developed. It was manufactured mixing two resin components with varying volume ratios resulting in surrogates with different flexural stiffnesses. The surrogates were characterized using three‐point bending tests and image analysis of their bending behavior when subjected to currents between 0.4 and 1.2 m/s. With the average Young's modulus ranging from 8.45 to 1708.42 MPa, the bending angle varies from 0° to 77.4° displaying the influence of material stiffness and flow velocity. Applying the Cauchy scaling law, this study shows that resin 3D printing can be used to model Elymus sp. with respect to its biomechanical properties allowing for seasonally independent physical laboratory experiments with plant models.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3