Adaptive deep neural network optimized control for a class of nonlinear strict‐feedback systems with prescribed performance

Author:

Lu Hongwei1ORCID,Wu Jian1,Wang Wei1

Affiliation:

1. University Key Laboratory of Intelligent Perception and Computing of Anhui Province Anqing Normal University Anqing China

Abstract

SummaryIn this article, an adaptive deep neural network (DNN) optimized control strategy is developed for a class of nonlinear strict‐feedback systems with prescribed performance. First, the DNN is applied to approximate the unknown function, and the weight update law is designed to reduce the mathematical challenge based on the first‐order Taylor's series. Second, the optimized backstepping technique is utilized to construct virtual and actual controllers in the backstepping process to achieve the overall control optimization of the system. Next, a control strategy based on the time‐varying switching function and the quartic barrier Lyapunov function is employed to achieve the prescribed performance. Then, the tracking error can converge to the prescribed accuracy within the prescribed time, and every signal within the system has a bound. Finally, the particle swarm optimization algorithm is utilized to search for the designed parameters and simulation examples to verify the effectiveness of the control strategy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3