Preparation of PVA/PEI/CNC/ZnO composite membrane with good mechanical properties and water resistance by electrostatic spinning using for efficient filtration of PM2.5

Author:

Huang Jingda12ORCID,Lin Shite2,Liang Yipeng2,Wang Enfu2,Miao Yu2,Zhang Wenbiao2,Sheng Kuichuan1

Affiliation:

1. College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China

2. College of Chemistry and Materials Engineering Zhejiang A&F University Hangzhou China

Abstract

AbstractIt is still a serious challenge to construct a water‐soluble polymer‐based air filtration membrane with high efficiency and good mechanical properties by electrospinning. In the study, using polyvinyl alcohol (PVA) and polyacetylimide (PEI) as the main materials, both nanocellulosic crystal (CNC) and zinc oxide (ZnO) as the synergistic reinforcers and methyltrimethoxysilane (MTMS) as the hydrophobic modifier, the electrospun PVA/PEI/CNC/ZnO composite nanofibrous membrane with dual air filtration mechanisms was established. One of the mechanisms was the interception of the three‐dimensional network structure built by the composite nanofibrous membrane, the other was the electrostatic adsorption provided by CNC. Based on the dual air filtration mechanisms, the filtration efficiency of particulate matter 2.5 (PM2.5) reached 98.20%. Moreover, the composite nanofibrous membrane displayed a good thermal stability and could still maintain more than the filtration efficiency of 83% and low‐pressure drop after treatment at 200 °C for 1 h. Moreover, the composite nanofibrous membrane could still maintain the filtration efficiency (97.3%) and low‐pressure drop (110.7 Pa) after five washing cycles after filtration, reflecting good reusability. Interestingly, the PVA/PEI/CNC/ZnO composite nanofibrous membrane was simple to produce and demonstrated excellent filtration efficiency, as well as excellent thermal stability, which could be an effective barrier against PM2.5 invasion.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3