Long-term time-series pollution forecast using statistical and deep learning methods
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-05901-2.pdf
Reference65 articles.
1. Mahajan S, Chen LJ, Tsai TC (2017) An empirical study of PM2.5 forecasting using neural network. https://doi.org/10.1109/UIC-ATC.2017.8397443
2. Xiang X (2019) Forecasting air pollution PM2.5 in beijing using weather data and multiple kernel learning. J Forecast. https://doi.org/10.1002/for.2599
3. Xie J (2017) Deep neural network for PM2.5 pollution forecasting based on manifold learning. In: 2017 international conference on sensing, diagnostics, prognostics, and control (SDPC), pp 236–240
4. Luo C, Yang H, Huang L, Mahajan S, Chen L (2018) A fast PM2.5 forecast approach based on time-series data analysis, regression and regularization. In: 2018 conference on technologies and applications of artificial intelligence (TAAI), pp 78–81
5. Feng X, Li Q, Zhu Y, Hou J, Jin L, Wang J (2015) Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos Environ 107:118–128. https://doi.org/10.1016/j.atmosenv.2015.02.030. http://www.sciencedirect.com/science/article/pii/S1352231015001491
Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Utilizing Machine Learning for air pollution prediction, comprehensive impact assessment, and effective solutions in Kolkata, India;Results in Earth Sciences;2024-12
2. Pollutants-mediated viral hepatitis in different types: assessment of different algorithms and time series models;Scientific Reports;2024-09-10
3. Assessing Statistical Models for Predictive Accuracy of PM2.5 Pollution in Delhi, India;REST Journal on Data Analytics and Artificial Intelligence;2024-09-05
4. Fine particulate matter concentration forecasting using long short-term memory network and meteorological inputs;GLOB J ENVIRON SCI M;2024
5. Air pollution prediction using blind source separation with Greylag Goose Optimization algorithm;Frontiers in Environmental Science;2024-08-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3