A review: From the whole process of making thermal conductive polymer, the effective method of improving thermal conductivity

Author:

Wu Xinheng1ORCID,Zhang Xiaoyu1ORCID,Yan Xixian1,Zhang Chi1,Zhang Yuqing1,Li Peiyao1,Li Ning1ORCID,Liu Hailong2,Wang Zhongwei3

Affiliation:

1. Jiangsu Province Key Laboratory of Environmentally Friendly Polymer Materials, School of Materials Science and Engineering Changzhou University Changzhou Jiangsu China

2. Shandong Dongyue Silicone Material Co., Ltd. Zibo Shandong China

3. College of Materials Science and Engineering Shandong University of Science and Technology Qingdao China

Abstract

AbstractWith the development of high power‐density electronic devices on smaller scales and emerging new energy vehicles, high thermal conductive materials have attracted more attention for better thermal management to adapt to various applications. By combining both the advantages of polymer materials and thermally conductive fillers, thermal conductive polymer composite materials are widely used in packaging and the protection of electronic devices for their mechanical robustness, high thermal conductivity, excellent insulation properties, heat resistance, and chemical resistance. In this review, first, the basic theory of heat conduction of polymer composites is discussed. Second, according to the classification of the composition of the thermal conductive polymer, the filled thermal conductive material is emphatically introduced. In this paper, the construction process of a thermal conductive network of polymer and composites is discussed from the perspective of processing. The simple construction of a thermal conductive network includes core‐shell structure, external force orientation, electrostatic spinning, electrostatic spraying, induced orientation, and vacuum‐assisted filtration. The three‐dimensional thermal conductivity network can be constructed using self‐assembly and template methods. From the above processing methods, this paper analyzes how to effectively improve thermal conductivity and achieve the goal of high thermal conductivity and excellent mechanical properties under low filling. After that, the contribution of filler and polymer modification to thermal conductivity is explained in detail. Finally, the future research direction of functionalization is prospected.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3