A temperature‐responsive dual network hydrogel for reversible smart actuator

Author:

Xie Ting123,Gao Yi123,Li Zequan123,Gao Wei12345ORCID

Affiliation:

1. School of Resources, Environment and Materials Guangxi University Nanning Guangxi China

2. Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes Guangxi University Nanning Guangxi China

3. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures Guangxi University Nanning China

4. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education Guangxi University Nanning Guangxi China

5. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety Guangxi University Nanning Guangxi China

Abstract

AbstractNowadays, soft actuators have received extensive attention in many application fields, among which hydrogels have become an important choice for constructing soft actuators due to their unique properties. However, the actuating behaviors of hydrogel‐based actuators are usually monotonous due to their unchangeable shapes and structures. Herein, we report a temperature‐responsive hydrogel actuator with a bilayer structure. Based on the dual network structure (polyvinyl alcohol/poly acrylamide and polyvinyl alcohol/poly (N‐isopropylacrylamide), the actuators can realize the reinforcement compared with the single network. Because of the intrinsic lower critical solution temperature of poly (N‐isopropylacrylamide, both sides of actuators have different swelling rates, enabling them to achieve the thermal‐responsive actuation and shape programming. Therefore, this work is promising to provide a new strategy for designing temperature switches and thermally driven soft robots.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3