A Magneto‐Responsive Hydrogel System for the Dynamic Mechano‐Modulation of Stem Cell Niche

Author:

Goodrich Robyn1,Tai Youyi1,Ye Zuyang2,Yin Yadong23,Nam Jin13ORCID

Affiliation:

1. Department of Bioengineering University of California Riverside CA 92521 USA

2. Department of Chemistry University of California Riverside CA 92521 USA

3. UC‐KIMS Center for Innovative Materials Riverside CA 92521 USA

Abstract

AbstractThe biophysical microenvironment of cells dynamically evolves during embryonic development, leading to defined tissue specification. A versatile and highly adaptive magneto‐responsive hydrogel system composed of magnetic nanorods (MNRs) and a stress‐responsive polymeric matrix is developed to dynamically regulate the physical stem cell niche. The anisotropic magnetic/shape factor of nanorods is utilized to maximize the strains on the polymeric network, thus regulating the hydrogel modulus in a physiologically relevant range under a minimal magnitude of the applied magnetic fields below 4.5 mT. More significantly, the pre‐alignment of MNRs induces greater collective strains on the polymeric network, resulting in a superior stiffening range, over a 500% increase as compared to that with randomly oriented nanorods. The pre‐alignment of nanorods also enables a fast and reversible response under a magnetic field of the opposite polarity as well as spatially controlled heterogeneity of modulus within the hydrogel by applying anisotropic magnetic fields. The mechano‐modulative capability of this system is validated by a mechanotransduction model with human‐induced pluripotent stem cells where the locally controlled hydrogel modulus regulates the activation of mechano‐sensitive signaling mediators and subsequent stem cell differentiation. Therefore, this magneto‐responsive hydrogel system provides a platform to investigate various cellular behaviors under dynamic mechanical microenvironments.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3