Robust sliding mode control for robot manipulators with analysis on trade‐off between reaching time and L∞ gain

Author:

Ryung Kang Oe1,Kim Jung Hoon12ORCID

Affiliation:

1. Department of Electrical Engineering Pohang University of Science and Technology (POSTECH) Pohang Republic of Korea

2. Institute for Convergence Research and Education in Advanced Technology Yonsei University Incheon Republic of Korea

Abstract

This paper provides a new sliding mode control (SMC) approach, by which both the nominal and robust stability associated with a trajectory tracking problem for an uncertain robot manipulator are achieved. More precisely, the new control law consists of linear and nonlinear functions of tracking errors, in which the former is for the nominal stability and the latter is to ensure the robust stability of the resulting closed‐loop systems. The nonlinear function can be interpreted as an extended version of conventional SMC approach, and the reaching phase corresponding to a pregiven sliding surface is shown to be completed in a finite time; the tracking errors arrive at the sliding surface in a finite time and do not deviate from it after the arrival. In the sliding phase, the tracking errors are also ensured to converge to the origin. Finally, some simulation results are given to demonstrate both the theoretical validity and practical effectiveness of the proposed control approach.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3