Individual bee foragers are less‐efficient transporters of pollen for plants from which they collect the most pollen in their scopae

Author:

Weinman Lucia R.12ORCID,Ress Trent2,Gardner Joel3,Winfree Rachael2

Affiliation:

1. Graduate Program in Ecology & Evolution 14 College Farm Road, Rutgers University New Brunswick NJ 08901 USA

2. Department of Ecology, Evolution & Natural Resources Rutgers University New Brunswick New Jersey 08901 USA

3. Department of Entomology University of Manitoba Winnipeg MB R3T 2N2 Canada

Abstract

AbstractPremiseBees provision most of the pollen removed from anthers to their larvae and transport only a small proportion to stigmas, which can negatively affect plant fitness. Though most bee species collect pollen from multiple plant species, we know little about how the efficiency of bees' pollen transport varies among host plant species or how it relates to other aspects of generalist bee foraging behavior that benefit plant fitness, such as specialization on individual foraging bouts.MethodsWe compared the pollen collected and transported by three bee species for 46 co‐occurring plant species. Specifically, we compared the relative abundance of pollen taxa in the individual bees' scopae, structures where bees store pollen to provision larvae, with the relative abundance of pollen taxa on the rest of bees' bodies, which is more likely to be transferred to stigmas.ResultsBees carried five times more pollen grains in their scopae than elsewhere on their bodies. Within foraging bouts, bees were relatively specialized in their pollen collection, but transported proportionally less pollen for the host plants on which they specialized. Across foraging bouts, two bee species transported proportionally less pollen for some of their host plants than for others, though differences didn't consistently follow the same trend as at the foraging bout scale.ConclusionsOur results suggest that foraging‐bout specialization, which is known to reduce heterospecific pollen transfer, also results in less‐efficient pollen transport. Thus, bee foragers that visit predominantly one plant species may have contrasting effects on that plant's fitness.

Publisher

Wiley

Subject

Plant Science,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3