State estimators for discrete‐time descriptor linear systems with mixed uncertainties and state constraints

Author:

de Paula Alesi A.1ORCID,Raffo Guilherme V.12ORCID,Teixeira Bruno O. S.12ORCID

Affiliation:

1. Graduate Program in Electrical Engineering Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil

2. Department of Electronic Engineering Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil

Abstract

AbstractThis article presents two novel mixed‐uncertainty state estimators for discrete‐time descriptor linear systems, namely linear time‐varying mixed‐uncertainty filter (LTVMF) and linear time‐invariant mixed‐uncertainty filter (LTIMF). The former is based on the minimum‐variance approach, from which quadratic and explicit (special case of quadratic) formulations are derived and addressed to LTV systems. Both formulations incorporate the knowledge of state linear constraints, such as equality (in the descriptor form) and inequality, to mitigate precision and accuracy issues related to initialization and evolution of the state estimates. The LTIMF algorithm is based on the mixed criterion and addressed to LTI systems, with the low‐cost computation being its motivation. Both LTVMF and LTIMF algorithms solve state‐estimation problems in which the uncertainties are combined to yield the so‐called mixed‐uncertainty vector, which is composed by set‐bounded uncertainties, characterized by constrained zonotopes, and stochastic uncertainties, characterized by Gaussian random vectors. As mixed‐uncertainty vectors imply biobjective optimization problems, we innovatively present multiobjective arguments to justify the choice of the solution on the Pareto‐optimal front. In order to discuss the advantages and drawbacks, the state estimators are tested in two numerical examples.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3