Why are graminoid species more dominant? Trait‐mediated plant–soil feedbacks shape community composition

Author:

Huang Kailing12ORCID,De Long Jonathan R.3,Yan Xuebin1,Wang Xiaoyi1,Wang Chunlong1,Zhang Yiwei1,Zhang Yuanyuan1,Wang Peng1ORCID,Du Guozhen4,van Kleunen Mark25ORCID,Guo Hui1ORCID

Affiliation:

1. College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China

2. Ecology, Department of Biology University of Konstanz Konstanz Germany

3. Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED‐ELD) University of Amsterdam Amsterdam The Netherlands

4. College of Ecology Lanzhou University Lanzhou China

5. Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China

Abstract

AbstractSpecies traits may determine plant interactions along with soil microbiome, further shaping plant–soil feedbacks (PSFs). However, how plant traits modulate PSFs and, consequently, the dominance of plant functional groups remains unclear. We used a combination of field surveys and a two‐phase PSF experiment to investigate whether forbs and graminoids differed in PSFs and in their trait–PSF associations. When grown in forb‐conditioned soils, forbs experienced stronger negative feedbacks, while graminoids experienced positive feedbacks. Graminoid‐conditioned soil resulted in neutral PSFs for both functional types. Forbs with thin roots and small seeds showed more‐negative PSFs than those with thick roots and large seeds. Conversely, graminoids with acquisitive root and leaf traits (i.e., thin roots and thin leaves) demonstrated greater positive PSFs than graminoids with thick roots and tough leaves. By distinguishing overall and soil biota‐mediated PSFs, we found that the associations between plant traits and PSFs within both functional groups were mainly mediated by soil biota. A simulation model demonstrated that such differences in PSFs could lead to a dominance of graminoids over forbs in natural plant communities, which might explain why graminoids dominate in grasslands. Our study provides new insights into the differentiation and adaptation of plant life‐history strategies under selection pressures imposed by soil biota.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3