Copula‐based joint distribution analysis of wind speed and wind direction: Wind energy development for Hong Kong

Author:

Huang Shiji1,Li Qiusheng23ORCID,Shu Zhenru1,Chan Pak Wai4

Affiliation:

1. School of Civil Engineering Central South University Changsha China

2. Department of Architecture and Civil Engineering City University of Hong Kong Hong Kong

3. Architecture and Civil Engineering Research Center City University of Hong Kong Shenzhen Research Institute Shenzhen China

4. Hong Kong Observatory Hong Kong

Abstract

AbstractAccurate and reliable assessment of wind energy potential has important implication to the wind energy industry. Most previous studies on wind energy assessment focused solely on wind speed, whereas the dependence of wind energy on wind direction was much less considered and documented. In this paper, a copula‐based method is proposed to better characterize the direction‐related wind energy potential at six typical sites in Hong Kong. The joint probability density function (JPDF) of wind speed and wind direction is constructed by a series of copula models. It shows that Frank copula has the best performance to fit the JPDF at hilltop and offshore sites while Gumbel copula outperforms other models at urban sites. The derived JPDFs are applied to estimate the direction‐related wind power density at the considered sites. The obtained maximum direction‐related wind energy density varies from 41.3 W/m2 at an urban site to 507.9 W/m2 at a hilltop site. These outcomes are expected to facilitate accurate micro‐site selection of wind turbines, thereby improving the economic benefits of wind farms in Hong Kong. Meanwhile, the developed copula‐based method provides useful references for further investigations regarding direction‐related wind energy assessments at various terrain regions. Notably, the proposed copula‐based method can also be applied to characterize the direction‐related wind energy potential somewhere other than Hong Kong.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3