A Circular-Linear Probabilistic Model Based on Nonparametric Copula with Applications to Directional Wind Energy Assessment
Author:
Liu Jie1,
Yan Zaizai1ORCID
Affiliation:
1. College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
Abstract
The joint probability density function of wind speed and wind direction serves as the mathematical basis for directional wind energy assessment. In this study, a nonparametric joint probability estimation system for wind velocity and direction based on copulas is proposed and empirically investigated in Inner Mongolia, China. Optimal bandwidth algorithms and transformation techniques are used to determine the nonparametric copula method. Various parameter copula models and models without considering dependency relationships are introduced and compared with this approach. The results indicate a significant advantage of employing the nonparametric copula model for fitting joint probability distributions of both wind speed and wind direction, as well as conducting correlation analyses. By utilizing the proposed KDE-COP-CV model, it becomes possible to accurately and reliably analyze how wind power density fluctuates in relation to wind direction. This study reveals the researched region possesses abundant wind resources, with the highest wind power density being highly dependent on wind direction at maximum speeds. Wind resources in selected regions of Inner Mongolia are predominantly concentrated in the northwest and west directions. These findings can contribute to improving the accuracy of micro-siting for wind farms, as well as optimizing the design and capacity of wind turbine generators.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia
research funds for universities under the Inner Mongolia Autonomous Region
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献