METTL3 mediated ferroptosis in chondrocytes and promoted pain in KOA via HMGB1 m6A modification

Author:

Bao Tianchi1,Liao Taiyang2ORCID,Cai Xuefeng1,Lu Binjie1,Dai Gaole1,Pei Shuai1,Zhang Yunqing1,Li Yuwei1,Xu Bo1ORCID

Affiliation:

1. Department of Orthopedics and Traumatology Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine Suzhou China

2. Department of Orthopedics and Traumatology Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine Nanjing China

Abstract

AbstractMethyltransferase‐like 3 (METTL3) plays a role in the development of knee osteoarthritis (KOA). However, the mechanism underlying the role of METTL3 in KOA is unclear. This work investigated the effects of MELLT3 on ferroptosis and pain relief in in vitro and in vivo KOA models. Chondrocytes were treated with 10 ng/mL interleukin‐1β (IL‐1β) or 5 μM Erastin (ferroptosis inducer). IL‐1β or Erastin treatment inhibited cell viability and glutathione levels; increased Fe2+, lipid reactive oxygen species and malondialdehyde production; and decreased glutathione peroxidase 4, ferritin light chain and solute carrier family 7 member 11 levels. The overexpression of METTL3 facilitated the N6‐methyladenosine methylation of high mobility group box 1 (HMGB1). HMGB1 overexpression reversed the effect of sh‐METTL3 on IL‐1β‐treated chondrocytes. A KOA rat model was established by the injection of monosodium iodoacetate into the joints and successful model establishment was confirmed by haematoxylin and eosin staining and Safranin O/Fast Green staining. METTL3 depletion alleviated cartilage damage, the inflammatory response, ferroptosis and knee pain in KOA model rats, and these effects were reversed by the addition of HMGB1. In conclusion, METTL3 depletion inhibited ferroptosis and the inflammatory response, and ameliorated cartilage damage and knee pain during KOA progression by regulating HMGB1.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3