BRD4 Silencing Protects Angiotensin II-Induced Cardiac Hypertrophy by Inhibiting TLR4/NF-κB and Activating Nrf2-HO-1 Pathways

Author:

Fang Ming1ORCID,Luo Jun1ORCID,Zhu Xi1ORCID,Wu Yingbiao1ORCID,Li Xinming1ORCID

Affiliation:

1. Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China

Abstract

Background. Heart failure is a critical health problem worldwide, and cardiac hypertrophy is an important characteristic of heart failure. Bromodomain-containing protein 4 (BRD4) is involved in various cellular processes, including cardiac hypertrophy. This study aimed to investigate the mechanism underlying the effects of BRD4 on cardiac hypertrophy. Methods. Rat myoblast H9c2 cells were treated with angiotensin II (Ang II) to increase the mRNA and protein expressions of BRD4. BRD4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Proteins involved in Nrf2-HO-1 pathway were determined by Western blot. Results. Our data suggest that BRD4 silencing attenuated Ang II, increased the percentage of TUNEL + cells and caspase-3 activity, increased oxidative stress, and increased the expression and content of pro-inflammatory cytokines. Mechanistically, we found that BRD4 silencing enhanced the protein expressions of Nrf2 and HO-1 and inhibited the TLR4 and phosphorylation of NF-kappa B in Ang II-stimulated H9c2 cells. TLR4 overexpression attenuated cardioprotection against Ang II by BRD4 silencing, including cardiac hypertrophy, oxidative stress, and inflammatory cytokine production. Additionally, TLR4 overexpression attenuated an increase in Nrf2 and HO-1 proteins and decreased phosphorylated NF-kappa B in H9c2 cells. Conclusion. Our results speculate that the BRD4/TLR4 axis might be a promising strategy for treating cardiovascular diseases with cardiac hypertrophy, including HF.

Publisher

Hindawi Limited

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Roles of histone acetylation sites in cardiac hypertrophy and heart failure;Frontiers in Cardiovascular Medicine;2023-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3