IPC‐based robust disturbance accommodating control for load mitigation and speed regulation of wind turbines

Author:

Kipchirchir Edwin1ORCID,Söffker Dirk1

Affiliation:

1. Dynamics and Control University of Duisburg‐Essen Duisburg Germany

Abstract

SummaryOver the past few decades, global demand for renewable energy has been rising steadily. To meet this demand, there has been an exponential growth in size of wind turbines (WTs) to capture more energy from wind. Consequent increase in weight and flexibility of WT components has led to increased structural loading, affecting reliability of these wind energy conversion systems. Spatio‐temporal variation of rotor effective wind field acts as a disturbance to a WT system, hence, necessitating controllers that can cancel this disturbance. Additionally, assumptions made in extracting linear models for controller design lead to modeling errors resulting from changing operating conditions. Previous attempts have proposed robust controllers incorporating wind disturbance models. However, these controllers have been evaluated on smaller WTs, which experience lower structural loading than larger ones. Additionally, a majority these controllers are based on collective pitch control (CPC), hence do not address loading in the blades. To address these challenges, this contribution proposes an independent pitch‐based robust disturbance accommodating controller (IPC‐RDAC) for reducing structural loads and regulating generator speed in utility‐scale WTs. The proposed controller is designed using ‐synthesis approach and is evaluated on the 5 MW National Renewable Energy Laboratory (NREL) reference WT. Its performance is evaluated against a gain‐scheduled proportional integral (GSPI)‐based reference open‐source controller (ROSCO) and a CPC‐based RDAC (CPC‐RDAC) controller, developed previously by the authors. Simulation results for various wind conditions show that the proposed controller offers improved performance in blade and tower load mitigation, as well a generator speed regulation.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

Reference38 articles.

1. GielenD GoriniR LemeR PrakashG.World energy transitions outlook: 1.5°C pathway (preview)  International Renewable Energy Agency (IRENA);2021.

2. LeeJ ZhaoF.Global wind report 2021  Global Wind Energy Council (GWEC);2021.https://gwec.net/global-wind-report-2021/

3. LeeJ ZhaoF.GWEC | Global wind report 2019  Global Wind Energy Council (GWEC);2020.https://gwec.net/global-wind-report-2019/

4. A Reference Open-Source Controller for Fixed and Floating Offshore Wind Turbines

5. Robust Multivariable Pitch Control Design for Load Reduction on Large Wind Turbines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3