Dual actions of chloroinconazide on pepper blight in Capsicum annuum: disruption of Phytophthora capsici mycelium and activation of CaCNGC9‐mediated SA signaling

Author:

Zhu Xin12,Zou Aihong12,Liao Rui3,Zhang Jianjian4,Liu Changyun1ORCID,Wang Chuanxiang4,Hao Chunyan4,Cheng Daoquan4,Chen Lunfei5,Sun Xianchao1ORCID

Affiliation:

1. College of Plant Protection, Southwest University Chongqing China

2. Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China

3. Technology Center, China Tobacco Guizhou Industrial Co., Ltd Guiyang China

4. National Center for Enterprise Technology of Jingbo Agrochemicals Technology Co. Ltd Binzhou China

5. Chongqing Company of China Tobacco Corporation Chongqing China

Abstract

AbstractBACKGROUNDPepper blight, caused by Phytophthora capsici, is a devastating disease that seriously threatens pepper production worldwide. With the emergence of resistance in P. capsici against conventional fungicides, there is an urgent need to explore novel alternatives for pepper blight management. This study aims to assess the inhibitory effect of chloroinconazide (CHI), a compound synthesized from tryptophan, against pepper blight, and to explore its potential mechanisms of action.RESULTSThe results demonstrated that CHI effectively targeted P. capsici, disrupting its growth and mycelial structure, which resulted in the release of dissolved intracellular substances. Additionally, CHI significantly inhibited the sporangium formation, zoospores release, and zoospores germination, thereby reducing the re‐infection of P. capsici. In contrast, the commercial pesticide methylaxyl only inhibited mycelial growth and had limited effect on re‐infection, while azoxystrobin inhibited re‐infection but had a weak inhibitory effect on mycelial growth. Furthermore, CHI activated the salicylic acid (SA) signaling pathway‐mediated immune response to inhibit P. capsici infection in pepper, with this activation being contingent upon cyclic nucleotide‐gated ion channel CaCNGC9.CONCLUSIONCHI exhibited potent dual inhibitory effects on P. capsici by disrupting mycelial structure and activating the CaCNGC9‐mediated SA signaling pathway. These dual mechanisms of action suggested that CHI could serve as a promising alternative chemical fungicide for the effective management of pepper blight, offering a new approach to control this devastating disease. Our findings highlighted the potential of CHI as a sustainable and efficient solution to combat the increasing resistance of P. capsici to conventional fungicides, ensuring better crop protection and yield. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3