Affiliation:
1. International Water Research Institute (IWRI) CSAES ‐ Mohammed VI Polytechnic University Benguerir Morocco
2. Laboratoire de Météorologie Dynamique‐IPSL Sorbonne Université/CNRS/École Normale Supérieure‐PSL Université/École Polytechnique‐Institut Polytechnique de Paris Paris France
3. Departamento de Matemática Aplicada y Ciencias de la Computación (MACC) Universidad de Cantabria Santander Spain
4. Grupo de Meteorología y Computación Universidad de Cantabria, Unidad Asociada al CSIC Santander Spain
Abstract
AbstractThe Mediterranean basin and Northern Africa are projected to be among the most vulnerable areas to climate change. This research documents, analyzes, and synthesizes the projected changes in precipitation P, evapotranspiration E, net water supply from the atmosphere to the surface P–E, and surface soil moisture over these regions as simulated by 17 global climate models from the sixth exercise of the Coupled Model Intercomparison Project (CMIP6) under two Shared Socioeconomic Pathways, SSP2‐4.5, and SSP5‐8.5. It also explores the sensitivity of the results to the chosen climate scenario and model resolution and assesses how the projections have evolved from the fifth exercise (CMIP5). Models project a statistically robust drying over the entire Mediterranean and coastal North Africa. Over the Northern Mediterranean sector, a significant precipitation decrease reaching −0.4 ∓ 0.1 mm is projected during the 21st century under the SSP5‐8.5 scenario. Conversely, a significant increase in precipitation of +0.05 to 0.3 ∓ 0.1 mm day−1 is projected over South‐Eastern Sahara under the same scenario. Evapotranspiration and soil moisture exhibit decreasing trends over the Mediterranean basin and an increase over the Sahara for both SSPs, with a notable acceleration from the 2020s. As a result, P‐E is projected to decrease at a rate of about −0.3 mm day−1 under the high‐end scenario SSP5‐8.5 over the Mediterranean whilst no significant changes are expected over the Sahara due to evapotranspiration compensation effects. CMIP6 and CMIP5 models project qualitatively similar patterns of changes but CMIP6 models exhibit more intense changes over the Mediterranean basin and South‐Eastern Sahara, especially during winter.
Funder
Université Mohammed VI Polytechnique
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献