Towards an advanced representation of precipitation over Morocco in a global climate model with resolution enhancement and empirical run‐time bias corrections

Author:

Balhane Saloua12ORCID,Cheruy Frédérique2,Driouech Fatima1,El Rhaz Khalid3,Idelkadi Abderrahmane2,Sima Adriana2,Vignon Étienne2ORCID,Drobinski Philippe2,Chehbouni Abdelghani4

Affiliation:

1. CSAES‐International Water Research Institute (IWRI) Mohammed VI Polytechnic University Benguerir Morocco

2. Laboratoire de Météorologie Dynamique‐IPSL Sorbonne Université/CNRS/École Normale Supérieure‐PSL Université/École Polytechnique‐Institut Polytechnique de Paris Paris France

3. Centre National du Climate Direction Générale de Météorologie Casablanca Morocco

4. CSAES‐Center for Remote Sensing Applications (CRSA) Mohammed VI Polytechnic University Benguerir Morocco

Abstract

AbstractMorocco, as a Mediterranean and North African country, is acknowledged as a climate change hotspot, where increased drought and related water resource shortages present a real challenge for human and natural systems. However, its geographic position and regional characteristics make the simulation of the distribution and variability of precipitation particularly challenging in the region. In this study, we propose an approach where the Laboratoire de Météorologie Dynamique Zoom (LMDZ) GCM is run with a stretched grid configuration developed with enhanced resolution (35 km) over the region, and we apply run‐time bias correction to deal with the atmospheric model's systematic errors on large‐scale circulation. The bias‐correction terms for wind and temperature are built using the climatological mean of the adjustment terms on tendency errors in an LMDZ simulation relaxed towards ERA5 reanalyses. The free reference run with the zoomed configuration is compared to two bias‐corrected runs. The free run exhibits noticeable improvements in mean low‐level circulation, high frequency variability and moisture transport and compares favourably to precipitation observations at the local scale. The mean simulated climate is substantially improved after bias correction w.r.t. to the uncorrected runs. At the regional scale, the bias‐correction showed improvements in moisture transport and precipitation distribution, but no noticeable effect was observed in mean precipitation amounts, interannual variability and extreme events. To address the latter, model tuning after grid refinement and developing more “scale‐aware” parameterizations are necessary. The observed improvements on the large‐scale circulation suggest that the run‐time bias correction can be used to drive regional climate models for a better representation of regional and local climate. It can also be combined with “a posteriori” bias correction methods to improve local precipitation simulation, including extreme events.

Funder

Grand Équipement National De Calcul Intensif

Université Mohammed VI Polytechnique

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3