Development of Multiple Linear Regression Models for Predicting Chronic Iron Toxicity to Aquatic Organisms

Author:

Brix Kevin V.12ORCID,Tear Lucinda3,DeForest David K.3ORCID,Adams William J.4ORCID

Affiliation:

1. EcoTox Miami Florida USA

2. Rosenstiel School of Marine and Atmospheric Science University of Miami Miami Florida USA

3. Windward Environmental Seattle Washington USA

4. Red Cap Consulting Lake Point Utah USA

Abstract

AbstractWe developed multiple linear regression (MLR) models for predicting iron (Fe) toxicity to aquatic organisms for use in deriving site‐specific water quality guidelines (WQGs). The effects of dissolved organic carbon (DOC), hardness, and pH on Fe toxicity to three representative taxa (Ceriodaphnia dubia, Pimephales promelas, and Raphidocelis subcapitata) were evaluated. Both DOC and pH were identified as toxicity‐modifying factors (TMFs) for P. promelas and R. subcapitata, whereas only DOC was a TMF for C. dubia. The MLR models based on effective concentration 10% and 20% values were developed and performed reasonably well, with adjusted R2 of 0.68–0.89 across all species and statistical endpoints. Differences among species in the MLR models precluded development of a pooled model. Instead, the species‐specific models were assumed to be representative of invertebrates, fish, and algae and were applied accordingly to normalize toxicity data. The species sensitivity distribution (SSD) included standard laboratory toxicity data and effects data from mesocosm experiments on aquatic insects, with aquatic insects being the predominant taxa in the lowest quartile of the SSD. Using the European Union approach for deriving WQGs, application of MLR models to this SSD resulted in WQGs ranging from 114 to 765 μg l−1 Fe across the TMF conditions evaluated (DOC: 0.5–10 mg l−1; pH: 6.0–8.4), with slightly higher WQGs (199–910 μg l−1) derived using the US Environmental Protection Agency (USEPA) methodology. An important uncertainty in these derivations is the applicability of the C. dubia MLR model (no pH parameter) to aquatic insects, and understanding the pH sensitivity of aquatic insects to Fe toxicity is a research priority. An Excel‐based tool for calculating Fe WQGs using both European Union and USEPA approaches across a range of TMF conditions is provided. Environ Toxicol Chem 2023;42:1386–1400. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3