Recommended updates to the USEPA Framework for Metals Risk Assessment: Aquatic ecosystems

Author:

Adams William J.1,Garman Emily R.2

Affiliation:

1. Red Cap Consulting Lake Point Utah USA

2. NiPERA Inc. Durham North Carolina USA

Abstract

AbstractIn 2007, the USEPA issued its “Framework for Metals Risk Assessment.” The framework provides technical guidance to risk assessors and regulators when performing human health and environmental risk assessments of metals. This article focuses on advances in the science including assessing bioavailability in aquatic ecosystems, short‐ and long‐term fate of metals in aquatic ecosystems, and advances in risk assessment of metals in sediments. Notable advances have occurred in the development of bioavailability models for assessing toxicity as a function of water chemistry in freshwater ecosystems. The biotic ligand model (BLM), the multiple linear regression model, and multimetal BLM now exist for most of the common mono‐ and divalent metals. Species sensitivity distributions for many metals exist, making it possible for many jurisdictions to develop or update their water quality criteria or guidelines. The understanding of the fate of metals in the environment has undergone significant scrutiny over the past 20 years. Transport and toxicity models have evolved including the Unit World Model allowing for estimation of concentrations of metals in various compartments as a function of loading and time. There has been significant focus on the transformation of metals in sediments into forms that are less bioavailable and on understanding conditions that result in resolubilization or redistribution of metals in and from sediments. Methods for spiking sediments have advanced such that the resulting chemistry in the laboratory mimics that in natural systems. Sediment bioavailability models are emerging including models that allow for prediction of toxicity in sediments for copper and nickel. Biodynamic models have been developed for several organisms and many metals. The models allow for estimates of transport of metals from sediments to organisms via their diet as well as their water exposure. All these advances expand the tool set available to risk assessors.Integr Environ Assess Manag2023;00:1–28. © 2023 The Authors.Integrated Environmental Assessment and Managementpublished by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Publisher

Wiley

Subject

General Environmental Science,General Medicine,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3