Calibrated forecasts of quasi‐periodic climate processes with deep echo state networks and penalized quantile regression

Author:

Bonas Matthew1ORCID,Wikle Christopher K.2ORCID,Castruccio Stefano1ORCID

Affiliation:

1. Dept. of Applied and Computational Mathematics and Statistics University of Notre Dame Notre Dame Indiana USA

2. Dept. of Statistics University of Missouri Columbia Missouri USA

Abstract

AbstractAmong the most relevant processes in the Earth system for human habitability are quasi‐periodic, ocean‐driven multi‐year events whose dynamics are currently incompletely characterized by physical models, and hence poorly predictable. This work aims at showing how (1) data‐driven, stochastic machine learning approaches provide an affordable yet flexible means to forecast these processes; (2) the associated uncertainty can be properly calibrated with fast ensemble‐based approaches. While the methodology introduced and discussed in this work pertains to synoptic scale events, the principle of augmenting incomplete or highly sensitive physical systems with data‐driven models to improve predictability is far more general and can be extended to environmental problems of any scale in time or space.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecological Modeling,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3