Affiliation:
1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
2. Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
3. Institute of Agricultural Sciences Lixiahe Region in Jiangsu Yangzhou China
4. Key Laboratory of Agro‐information Services Technology Ministry of Agriculture Beijing China
Abstract
AbstractEstimating wheat yield accurately is crucial for efficient agricultural management. While canopy spectral information is widely used for this purpose, the incorporation of canopy volumetric features (CVFs) remains underexplored. This study bridges this gap by utilizing unmanned aerial vehicle (UAV) multispectral imaging to capture images and elevation data of wheat at key developmental stages—gestation and flowering stages. We innovatively leveraged the elevation differences between these stages to calculate canopy height, develop a novel CVF, and refine the wheat yield prediction model across various wheat varieties, nitrogen fertilizer levels, and planting densities. The integration of canopy volume information significantly enhanced the accuracy of our yield prediction model, as evidenced by an R2 of 0.8380, an RMSE of 313.3 kg/ha, and an nRMSE of 11.33%. This approach not only yielded more precise estimates than models relying solely on spectral data but also introduced a novel dimension to wheat yield estimation methodologies. Our findings suggest that incorporating canopy volume characteristics can substantially optimize wheat yield prediction models, presenting a groundbreaking perspective for agricultural yield estimation.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献