Climate and shared evolutionary history drive trait variation among species of Neotropical understory monocots

Author:

Ávila‐Lovera Eleinis12ORCID,Vargas Oscar M.34ORCID,Funk Jennifer L.5ORCID,Kay Kathleen M.3ORCID,Goldsmith Gregory R.2ORCID

Affiliation:

1. School of Biological Sciences University of Utah Salt Lake City Utah USA

2. Schmid College of Science and Technology Chapman University Orange California USA

3. Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California USA

4. Department of Biological Sciences Humboldt State University Arcata California USA

5. Department of Plant Sciences University of California, Davis Davis California USA

Abstract

AbstractEnvironmental variation commonly drives functional trait diversity within species, among species, and across communities. Climate and shared evolutionary history can both influence trait–environment relationships. We studied variation in plant functional traits among closely related Costus species occurring across environmental gradients, the extent to which this variation occurs within single species, and how that variation may be influenced by shared evolutionary history. We measured leaf, aboveground stem, rhizome, and fine root traits of 17 species of Costus in eight sites in Costa Rica and Panama, which varied in elevation, temperature, and precipitation. We then assessed the relationships among traits and environmental variables and estimated the phylogenetic signal of the traits. We observed significant relationships between functional traits and climate. Stomatal conductance decreased, but stem density and rhizome dry matter content increased with decreasing mean annual temperature and precipitation seasonality in both cross‐species and single‐species analyses. This suggests that herbaceous species have a similar trade‐off between plant hydraulic efficiency and safety as found in woody plants. Mean annual temperature was a stronger driver of trait variation than mean annual precipitation. We also found phylogenetic signal in leaf and stem structural traits (i.e., closely related species are more similar than distantly related species), but not in physiological or belowground traits. Our results demonstrate significant trait variation within and among species of Costus, a widespread understory and herbaceous genus in the tropics, which is driven by both climate and shared evolutionary history.

Funder

Division of Environmental Biology

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3