Affiliation:
1. Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
Abstract
AbstractFrom density functional theory calculations, we elucidated the reaction mechanism of CO2 reduction on silicene nanoflakes. According to the results, silicene monoflakes present a notable catalytic activity for the hydrogenation of CO2. The most probable energetically favorable reaction pathway is formic acid and formaldehyde production, with energy barriers ranging between 16 and 24.1 kcal/mol. At the same time, transforming carbon dioxide to methanol, carbon monoxide, and methane requires higher activation energies. This theoretical perspective provides significant insights into silicene‐based materials and their potential applications as CO2 conversion to fuel and value‐added chemicals.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献