Non-equilibrium Green’s function approach for simulation asymmetric source-drain silicene-based photodetectors

Author:

Alaee FatemeORCID,Sadeghzadeh Mohammad AliORCID,Ostovari FatemehORCID

Abstract

Abstract Photodetectors based on Armchair-Silicene-Nanoribbons (ASiNR) with asymmetric source (Ir-doped silicene) and drain (Cu-, Ag-, or Au-doped silicene) contacts have been simulated employing tight-binding approximation coupling to Non-Equilibrium Green’s Function (NEGF) approach. Monochromatic 1 kW cm−2 illumination in the range of 0.110 eV has been used for the simulation of the photocurrent, photoresponsivity, quantum efficiency, and detectivity. It is shown that the highest peak in the photocurrent spectrum occurs at the 273 nm incident wavelength for all devices, and the Ir-Cu device has presented enhanced photodetector characteristics than Ir-Ag and Ir-Au devices. It is also found that only transitions between two subbands with identical indexes are allowed. Moreover, the first peak in the photocurrent spectrum is related to the main band gap of ASiNR. Additionally, the simulated dark and total currents versus source-drain voltage reveal that photocurrent caused a negative shift in the total current proportional to incident light intensity.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3