Corrosion Inhibition of Carbon Steel by Some Schiff Base Compounds in HCl and H2SO4 Solutions

Author:

Iranpour Maryam1,Babaei Ali12ORCID,Bagherzadeh Mojtaba3

Affiliation:

1. Department of Chemistry Faculty of Science Arak University Arak Iran

2. Institute of Nanosciences & Nanotechnology Arak University Arak Iran

3. Reactor and Nuclear Safety Research School Nuclear Science and Technology Research Institute Tehran Iran

Abstract

AbstractThe inhibition power of two Schiff bases on carbon steel corrosion in 1 M HCl and 0.5 M H2SO4 solutions has been investigated using weight loss, Tafel polarization, and electrochemical impedance spectroscopy techniques. The results revealed that increasing the concentration of inhibitors in acidic solutions led to a higher inhibition efficiency. The polarization curves indicated that the Schiff bases acted as mixed inhibitors, affecting both the cathodic and anodic reactions. The adsorption of the inhibitors on the carbon steel surface followed the Langmuir adsorption isotherm, and various adsorption isotherm parameters such as Kads, ΔGads, ΔHads, and ΔSads were determined at room temperature. Furthermore, the effect of temperature on the inhibitors′ performance was examined within the range of 25–45 °C. The corrosion‐related activation energy, pre‐exponential factor (k), activation enthalpy, and entropy were calculated to assess the inhibitors′ behavior. Scanning electron microscopy (SEM) was employed to examine some carbon steel samples, revealing differences in inhibition efficiency attributed to the inhibitors′ chemical structure. The results highlighted the highest inhibition efficiency in H2SO4 medium at 93.4 %, with a corresponding free energy of 39.51 KJ/mol indicating physical‐chemical adsorption of inhibitor molecules. Furthermore, an enthalpy value of −40.6 KJ/mol suggested an exothermic inhibitor absorption process. The findings are presented and discussed in detail.

Funder

Arak University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3