Surface modification of graphene-coated carbon steel using aromatic molecules for enhancing corrosion resistance; comparison between type of aryl substitution with different spatial situations

Author:

Shams Ghahfarokhi Zahra,Bagherzadeh Mojtaba,Ghiamati Yazdi Ebrahim,Teimouri Abbas

Abstract

Purpose The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it. Corrosion protection efficiency of graphene was raised via modifying the surface of graphene-coated carbon steel (CS/G) by using aromatic molecules. Phenyl groups with three different substitutions including COOH, NO2 and CH3 grafted to graphene via diazonium salt formation route, by using carboxy phenyl, nitro phenyl and methyl phenyl diazonium salts in ortho, meta and para spatial situations. Design/methodology/approach Molecular bindings were characterized by using X-ray diffractometer, fourier-transform infrared spectroscopy (FTIR), Raman and scanning electron microscopy (SEM)/ energy dispersive X-ray analysis (EDXA) methods. Anti-corrosion performance of modified CS/G electrodes was evaluated by weight loss and electrochemical techniques, potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy, in 3.5 per cent NaCl solution. Findings The obtained results confirmed covalently bonding of phenyl groups to the graphene surface. Also, the observed results showed that substitution spatial situations on phenyl groups can affect charge transfer resistance (Rct), corrosion potential (Ecorr), corrosion current density (jcorr) and the slope of the anodic and cathodic reaction (ßa,c), demonstrating that the proposed modification method can hinder the corrosion reactions. The proposed modification led to restoring the graphene surface defects and consequently increasing its corrosion protection efficiency. Originality/value The obtained results from electrochemical methods proved that protection efficiency was observed in order COOH < NO2 < CH3 and MPD in the para spatial situation and showed the maximum protection efficiency of 98.6 per cent in comparison to other substitutions. Finally, the ability of proposed graphene surface modification route was further proofed by using surface methods, i.e. SEM and EDXA, and contact angles measurements.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Reference70 articles.

1. Graphene based anticorrosive coatings for Cr (Vi) replacement;Nanoscale,2015

2. Corrosion inhibition of nanocomposite based on acrylamide copolymers/magnetite for steel;Digest Journal of Nanomaterials and Biostructures,2014

3. Surface functionalization of graphene,2015

4. Electrochemical detection of dopamine based on pre-concentration by graphene nanosheets;The Analyst,2013

5. Electrochemical and surface evaluation of the anti-corrosion properties of reduced graphene oxide;RSC Advances,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3