Transcriptome profiling reveals the expression and regulation of genes associated with Fusarium wilt resistance in chickpea (Cicer arietinum L.)

Author:

Garg Vanika12ORCID,Chitikineni Annapurna12,Sharma Mamta2,Ghosh Raju2,Samineni Srinivasan23,Varshney Rajeev K.12ORCID,Kudapa Himabindu2

Affiliation:

1. Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute Murdoch University Murdoch Western Australia Australia

2. International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT) Hyderabad India

3. Crop Diversification and Genetics International Center for Biosaline Agriculture (ICBA) Dubai Uniited Arab Emirates

Abstract

AbstractFusarium wilt (FW) is one of the most significant biotic stresses limiting chickpea production worldwide. To dissect the molecular mechanism of FW resistance in chickpea, comparative transcriptome analyses of contrasting resistance sources of chickpea genotypes under control and Fusarium oxysporum f. sp. ciceris (Foc) inoculated conditions were performed. The high‐throughput transcriptome sequencing generated about 1137 million sequencing reads from 24 samples representing two resistant genotypes, two susceptible genotypes, and two near‐isogenic lines under control and stress conditions at two‐time points (7th‐ and 12th‐day post‐inoculation). The analysis identified 5182 differentially expressed genes (DEGs) between different combinations of chickpea genotypes. Functional annotation of these genes indicated their involvement in various biological processes such as defense response, cell wall biogenesis, secondary metabolism, and disease resistance. A significant number (382) of transcription factor encoding genes exhibited differential expression patterns under stress. Further, a considerable number of the identified DEGs (287) co‐localized with previously reported quantitative trait locus for FW resistance. Several resistance/susceptibility‐related genes, such as SERINE/THREONINE PROTEIN KINASE, DIRIGENT, and MLO exhibiting contrasting expression patterns in resistant and susceptible genotypes upon Foc inoculation, were identified. The results presented in the study provide valuable insights into the transcriptional dynamics associated with FW stress response in chickpea and provide candidate genes for the development of disease‐resistant chickpea cultivars.

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3