Meta‐analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.)

Author:

Halladakeri Priyanka1,Gudi Santosh2ORCID,Akhtar Sabina3,Singh Gurjeet2,Saini Dinesh Kumar2,Hilli Harshavardan J.2,Sakure Amar4,Macwana Sneha1,Mir Reyazul Rouf5ORCID

Affiliation:

1. Department of Genetics and Plant Breeding Anand Agricultural University Gujarat India

2. Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India

3. College of Education American University in the Emirates Dubai UAE

4. Department of Agricultural Biotechnology Anand Agricultural University Gujarat India

5. Division of Genetics and Plant Breeding Faculty of Agriculture SKUAST‐Kashmir Wadura India

Abstract

AbstractA meta‐analysis of quantitative trait loci (QTLs), associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits was conducted for the first time in pigeonpea (Cajanus cajan L.). Data on 498 QTLs was collected from 9 linkage mapping studies (involving 21 biparental populations). Of these 498, 203 QTLs were projected onto “PigeonPea_ConsensusMap_2022,” saturated with 10,522 markers, which resulted in the prediction of 34 meta‐QTLs (MQTLs). The average confidence interval (CI) of these MQTLs (2.54 cM) was 3.37 times lower than the CI of the initial QTLs (8.56 cM). Of the 34 MQTLs, 12 high‐confidence MQTLs with CI (≤5 cM) and a greater number of initial QTLs (≥5) were utilized to extract 2255 gene models, of which 105 were believed to be associated with different traits under study. Furthermore, eight of these MQTLs were observed to overlap with several marker‐trait associations or significant SNPs identified in previous genome‐wide association studies. Furthermore, synteny and ortho‐MQTL analyses among pigeonpea and four related legumes crops, such as chickpea, pea, cowpea, and French bean, led to the identification of 117 orthologous genes from 20 MQTL regions. Markers associated with MQTLs can be employed for MQTL‐assisted breeding as well as to improve the prediction accuracy of genomic selection in pigeonpea. Additionally, MQTLs may be subjected to fine mapping, and some of the promising candidate genes may serve as potential targets for positional cloning and functional analysis to elucidate the molecular mechanisms underlying the target traits.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3