Chromosome-scale reference genome of an ancient landrace: unveiling the genetic basis of seed weight in the food legume crop pigeonpea (Cajanus cajan)

Author:

Liu Chun1234,Ding Xipeng1,Wu Yuanhang5,Zhang Jianyu4,Huang Rui1,Li Xinyong1,Liu Guodao1,Liu Pandao123

Affiliation:

1. Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, , Haikou/Sanya 571101/572024, China

2. Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China , Ministry of Agriculture and Rural Affairs, Haikou 571101, China

3. Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province , Haikou 571101, China

4. Hainan University School of Tropical Agriculture and Forestry, Sanya Institute Breeding and Multiplication, , Haikou/Sanya 570228/572025, China

5. Hubei University of Science and Technology School of Nuclear Technology and Chemistry & Biology, , Xianning 437100, China

Abstract

Abstract Pigeonpea (Cajanus cajan) is a nutrient-rich and versatile food legume crop of tropical and subtropical regions. In this study, we describe the de novo assembly of a high-quality genome for the ancient pigeonpea landrace ‘D30’, achieved through a combination of Pacific Biosciences high-fidelity (PacBio HiFi) and high-throughput chromatin conformation capture (Hi-C) sequencing technologies. The assembled ‘D30’ genome has a size of 813.54 Mb, with a contig N50 of 10.74 Mb, a scaffold N50 of 73.07 Mb, and a GC content of 35.67%. Genomic evaluation revealed that the ‘D30’ genome contains 99.2% of Benchmarking Universal Single-Copy Orthologs (BUSCO) and achieves a 29.06 long terminal repeat (LTR) assembly index (LAI). Genome annotation indicated that ‘D30’ encompasses 431.37 Mb of repeat elements (53.02% of the genome) and 37 977 protein-coding genes. Identification of single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural variations between ‘D30’ and the published genome of pigeonpea cultivar ‘Asha’ suggests that genes affected by these variations may play important roles in biotic and abiotic stress responses. Further investigation of genomic regions under selection highlights genes enriched in starch and sucrose metabolism, with 42.11% of these genes highly expressed in seeds. Finally, we conducted genome-wide association studies (GWAS) to facilitate the identification of 28 marker–trait associations for six agronomic traits of pigeonpea. Notably, we discovered a calmodulin-like protein (CcCML) that harbors a dominant haplotype associated with the 100-seed weight of pigeonpea. Our study provides a foundational resource for developing genomics-assisted breeding programs in pigeonpea.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3