Antiviral effects and tissue exposure of tetrandrine against SARS‐CoV‐2 infection and COVID‐19

Author:

Liu Jia1,Wang Furun2,Wang Xi1,Fan Shiyong2,Li Yufeng1,Xu Mingyue1,Hu Hengrui1,Liu Ke2,Zheng Bohong2,Wang Lingchao2,Zhang Huanyu1,Li Jiang1,Li Wei2,Zhang Wenpeng2,Hu Zhihong1ORCID,Cao Ruiyuan2,Zhuang Xiaomei2,Wang Manli13,Zhong Wu2

Affiliation:

1. State Key Laboratory of Virology Wuhan Institute of Virology Center for Biosafety Mega‐Science Chinese Academy of Sciences Wuhan China

2. National Engineering Research Center for the Emergency Drug Beijing Institute of Pharmacology and Toxicology Beijing China

3. Hubei Jiangxia Laboratory Wuhan China

Abstract

AbstractTetrandrine (TET) has been used to treat silicosis in China for decades. The aim of this study was to facilitate rational repurposing of TET against SARS‐CoV‐2 infection. In this study, we confirmed that TET exhibited antiviral potency against SARS‐CoV‐2 in the African green monkey kidney (Vero E6), human hepatocarcinoma (Huh7), and human lung adenocarcinoma epithelial (Calu‐3) cell lines. TET functioned during the early‐entry stage of SARS‐CoV‐2 and impeded intracellular trafficking of the virus from early endosomes to endolysosomes. An in vivo study that used adenovirus (AdV) 5‐human angiotensin‐converting enzyme 2 (hACE2)‐transduced mice showed that although TET did not reduce pulmonary viral load, it significantly alleviated pathological damage in SARS‐CoV‐2‐infected murine lungs. The systemic preclinical pharmacokinetics were investigated based on in vivo and in vitro models, and the route‐dependent biodistribution of TET was explored. TET had a large volume of distribution, which contributed to its high tissue accumulation. Inhaled administration helped TET target the lung and reduced its exposure to other tissues, which mitigated its off‐target toxicity. Based on the available human pharmacokinetic data, it appeared feasible to achieve an unbound TET 90% maximal effective concentration (EC90) in human lungs. This study provides insights into the route‐dependent pulmonary biodistribution of TET associated with its efficacy.

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3