Superiority of model predictive control with robust and stable approach for sliding wheeled mobile systems in the presence of obstacles

Author:

Korayem Moharam Habibnejad1ORCID,Namdarpour Fateme1ORCID,Lademakhi Naeim Yousefi1ORCID

Affiliation:

1. Robotics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering Iran University of Science and Technology Tehran Iran

Abstract

AbstractIn this paper, we present two distinct linear Model Predictive Control (MPC) methods for controlling mobile robots in the presence of obstacles while considering the wheel slip. Predictability of the controller enables the robot to automatically choose an alternative path to avoid obstacles. However, environmental conditions and disturbances, including slip, may impact the system model. Therefore, to accurately represent the system, slip angle and slip ratio are factored into the modeling process. Then the kinematic model is linearized using the successive method to reduce computational cost. Next, both Stable MPC (SMPC) and Robust MPC have been designed and implemented on the linearized time‐variant model to control the robot. The superiority of the robust predictive control method over the stable method has been discussed in terms of safety and optimal performance considering wheel slip. Finally, based on experimental tests, it has been found that the robust predictive controller is more effective than stable control when the surface is slippery and there is an obstacle in front of the robot. However, in a case where the wheel slip is neglectable, SMPC can be a better choice in presence of obstacles due to the lower computational cost.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3