Mechanical and fracture properties of carbon nano fibers/short carbon fiber epoxy composites

Author:

Nimbagal Vijayakumar1,Banapurmath N. R.1,Umarfarooq M. A.1ORCID,Revankar Suraj1,Sajjan Ashok M.2,Soudagar Manzoore Elahi M.3ORCID,Shahapurkar Kiran4ORCID,Alamir Mohammed A.5,Alarifi Ibrahim M.6ORCID,Elfasakhany Ashraf7

Affiliation:

1. School of Mechanical Engineering KLE Technological University Hubballi India

2. Department of Chemistry KLE Technological University Hubballi India

3. Department of VLSI Microelectronics, Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India

4. Department of Mechanical Engineering, School of Mechanical, Materials and Chemical Engineering Adama Science and Technology University Adama Ethiopia

5. Department of Mechanical Engineering, College of Engineering Jazan University Jazan Saudi Arabia

6. Department of Mechanical and Industrial Engineering, College of Engineering Majmaah University Riyadh Saudi Arabia

7. Mechanical Engineering Department, College of Engineering Taif University Taif Saudi Arabia

Abstract

AbstractThis work investigated the influence of carbon nanofibers (CNFs) and aggregate of CNFs with micro‐sized short carbon fibers (SCFs) on the mechanical, thermal, and fracture properties of epoxy (80%) ‐ Polylactic acid (PLA) (20%) composite. Epoxy‐PLA composite loaded with CNFs (0.2, 0.3, and 0.4 wt.%) and a combination of CNFs and SCFs (0.2 and 0.4 wt.% with equal content of each filler) were manufactured by sonication and manual casting. The synergistic effects of CNFs and SCFs in the epoxy matrix were investigated through mechanical and fracture characterization of nanocomposites. In comparison to CNF‐reinforced nanocomposites, the composites reinforced with integrated multiscale fillers have higher tensile, flexural, impact strength, and fracture toughness. Tensile, flexural and impact strength increased by 17.18–25.72%, 39.24–44.07%, and 39.87–97.05% respectively with the incorporation of both CNFs and SCFs into epoxy‐PLA matrices. An improvement in fracture toughness in the range of 37.93–38.77% was observed in hybrid nanocomposites in comparison to pristine epoxy‐PLA composite. The synergetic mechanism of nano and micro fillers was studied by using the fracture surfaces from tensile tests using scanning electron microscopy. The numerical analysis was also carried out to simulate the effects of filler concentration on the tensile and bending strength of nanocomposites through representative volume element using an ANSYS workbench.

Funder

Taif University

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3