The energetics and evolution of oxidoreductases in deep time

Author:

McGuinness Kenneth N.12ORCID,Fehon Nolan3ORCID,Feehan Ryan4ORCID,Miller Michelle3ORCID,Mutter Andrew C.5ORCID,Rybak Laryssa A.5,Nam Justin2,AbuSalim Jenna E.2ORCID,Atkinson Joshua T.6ORCID,Heidari Hirbod7ORCID,Losada Natalie2ORCID,Kim J. Dongun3,Koder Ronald L.5ORCID,Lu Yi7ORCID,Silberg Jonathan J.6ORCID,Slusky Joanna S. G.48ORCID,Falkowski Paul G.39ORCID,Nanda Vikas210ORCID

Affiliation:

1. Department of Natural Sciences Caldwell University Caldwell New Jersey USA

2. Center for Advanced Biotechnology and Medicine Rutgers University Piscataway New Jersey USA

3. Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences Rutgers University New Brunswick New Jersey USA

4. Computational Biology Program The University of Kansas Lawrence Kansas USA

5. Department of Physics The City College of New York New York New York USA

6. Department of Chemical and Biomolecular Engineering Rice University Houston Texas USA

7. Department of Chemistry University of Texas at Austin Austin Texas USA

8. Department of Molecular Biosciences The University of Kansas Lawrence Kansas USA

9. Department of Earth and Planetary Sciences Rutgers University New Brunswick New Jersey USA

10. Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University Piscataway New Jersey USA

Abstract

AbstractThe core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation–reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation–reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user‐contributed submissions with the intention of making it a valuable resource for researchers in this field.

Funder

NASA Astrobiology Institute

National Science Foundation

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3