Dynamic Nanophotonics in Epsilon‐Near‐Zero Conductive Oxide Films and Metasurfaces: A Quantitative, Nonlinear, Computational Model

Author:

Baxter Joshua1,Pérez-Casanova Adriana2,Cortes-Herrera Luis23,Calà Lesina Antonio4,De Leon Israel256,Ramunno Lora15ORCID

Affiliation:

1. Department of Physics and Centre for Research in Photonics University of Ottawa Ottawa K1N 6N5 Canada

2. School of Engineering and Sciences Tecnologico de Monterrey Monterrey NL 64849 Mexico

3. Institute of Optics University of Rochester Rochester NY 14627 USA

4. Hannover Centre for Optical Technologies Cluster of Excellence PhoenixD, and Faculty of Mechanical Engineering (Institute for Transport and Automation Technology) Leibniz University Hannover Hannover 30167 Germany

5. Max Planck–University of Ottawa Centre for Extreme and Quantum Photonics Ottawa K1N 6N5 Canada

6. School of Electrical Engineering and Computer Science University of Ottawa Ottawa K1N 6N5 Canada

Abstract

The promise of dynamic nanophotonic technologies relies on the confinement and spatiotemporal control of light at the nanoscale. Confinement via plasmonics, dielectric resonators, and waveguides can be complemented with materials whose optical properties can be controlled using nonlinear effects. Transparent conducting oxides (TCOs) exhibit strong optical nonlinearities in their near‐zero permittivity spectral region, on the femtosecond timescale. Harnessing full spatiotemporal control over the nonlinear response requires a deeper understanding of the process. To achieve this, a self‐consistent multiphysics time‐domain model for the nonlinear optical response of TCOs is developed and implemented into a 3D finite‐difference time‐domain code. Simulations are compared and tuned against recently published experimental results for intense laser irradiation of thin indium tin oxide (ITO) films, achieving good quantitative agreement; the time‐domain dynamics of the nonlinear response and the phenomenon of time‐refraction are also explored. Finally, by simulating intense laser irradiation of a plasmonic particle on an ITO film, the applicability of the approach to time‐varying metasurfaces is demonstrated. As expected, significant enhancement of the nonlinear response of an ITO‐based metasurface over bare ITO thin films is found. This work thus enables quantitative nanophotonics design with conductive oxides in their epsilon‐near‐zero region.

Funder

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3