Abstract
Recent advancements in materials and metamaterials with strong, time-varying, nonlinear optical responses have spurred a surge of interest in time-varying photonics. This opens the door to novel optical phenomena including reciprocity breaking, frequency translation, and amplification that can be further optimized by improving the light-matter interaction. Although there has been recent interest in applying topology-based inverse design to this problem, we propose a novel approach in this article. We introduce a method for the inverse design of optical pulse shapes to enhance their interaction with time-varying media. We validate our objective-first approach by maximizing the transmittance of optical pulses of equal intensity through time-varying media. Through this approach, we achieve large, broadband enhancements in pulse energy transmission, including gain, without altering the incident pulse energy. As a final test, we maximize pulse transmission through thin films of indium tin oxide, a time-varying medium when strongly pumped in its ENZ band. Our work presents a new degree of freedom for the exploration, application, and design of time-varying systems and we hope it inspires further research in this direction.
Funder
Compute Canada
Natural Sciences and Engineering Research Council of Canada
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献