Affiliation:
1. School of Electronic Engineering and Computer Science Queen Mary University of London London E1 4NS UK
Abstract
Surface symmetry breaking and disorder have been recently explored to overcome operation bandwidth, unwanted diffraction, and polarization dependence issues in the conventional metasurface designs thanks to their increasing degrees of design freedom. However, efficient full‐wave simulation and optimization of electrically large electromagnetic structures have been a longstanding problem. Herein, an interactive learning approach is developed to build new meta‐atom datasets which include the effect of mutual coupling. A deep learning‐based model is developed to extract features of incident/reflection waves and their neighboring interaction responses from a limited number of known meta‐atoms. Finally, the deep neural network is incorporated with optimization algorithms to design, as an example, large‐scale metasurfaces for beam manipulation and wideband scattering reduction. The results demonstrate that the proposed architecture can be successfully applied to rapidly design aperture‐efficient metasurfaces or metalenses at large scales of over tens of thousands of meta‐atoms.
Funder
Engineering and Physical Sciences Research Council
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献