Affiliation:
1. Department of Mechanical Engineering Northwestern University Evanston IL 60208 USA
2. Department of Mathematics Lehigh University Bethlehem PA 18015 USA
Abstract
AbstractMultifunctional metamaterials (MMM) bear promise as next‐generation material platforms supporting miniaturization and customization. Despite many proof‐of‐concept demonstrations and the proliferation of deep learning assisted design, grand challenges of inverse design for MMM, especially those involving heterogeneous fields possibly subject to either mutual meta‐atom coupling or long‐range interactions, remain largely under‐explored. To this end, a data‐driven design framework is presented, which streamlines the inverse design of MMMs involving heterogeneous fields. A core enabler is implicit Fourier neural operator (IFNO), which predicts heterogeneous fields distributed across a metamaterial array, thus in general at odds with homogenization assumptions. Additionally, a standard formulation of inverse problem covering a broad class of MMMs is presented, together with gradient‐based multitask concurrent optimization identifying a set of Pareto‐optimal architecture‐stimulus (A‐S) pairs. Fourier multiclass blending is proposed to synthesize inter‐class meta‐atoms anchored on a set of geometric motifs, while enjoying training‐free dimension reduction and built‐it reconstruction. Interlocking the three pillars, the framework is validated for light‐by‐light programmable nanoantenna, whose design involves vast space jointly spanned by quasi‐freeform supercells, maneuverable incident phase distributions, and conflicting figure‐of‐merits (FoM) involving on‐demand localization patterns. Accommodating all the challenges, the framework can propel future advancements of MMM.
Funder
Division of Civil, Mechanical and Manufacturing Innovation
Office of Advanced Cyberinfrastructure
Division of Mathematical Sciences
Air Force Office of Scientific Research