Design of Ion Channel Confined Binary Metal Cu‐Fe Selenides for All‐Climate, High‐Capacity Sodium Ion Batteries

Author:

Chen Dongliang1,Ye Zhangran2,Jia Peng2,Zhao Zhenyun1,Lin Jingwen1,Wang Xu1,Ye Zhizhen1,Li Tongtong3,Zhang Liqiang2,Lu Jianguo1ORCID

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

2. State Key Laboratory of Metastable Materials Science and Technology School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 China

3. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China

Abstract

AbstractExploring special anode materials with high capacity, stable structure, and extreme temperature feasibility remains a great challenge in secondary sodium based energy systems. Here, a bimetallic Cu‐Fe selenide nanosheet with refined nanostructure providing confined internal ion transport channels are reported, in which the structure improves the pseudocapacitance and reduces the charge transfer resistance for making a significant contribution to accelerating the reaction dynamics. The CuFeSe2 nanosheets have a high initial specific capacity of 480.4 mAh g−1 at 0.25 A g−1, showing impressively excellent rate performance and ultralong cycling life over 1000 cycles with 261.1 mAh g−1 at 2.5 A g−1. Meanwhile, it exhibits a good sodium storage performance at extreme temperatures from −20 °C to 50 °C, supporting at least 500 cycles. Besides, the CuFeSe2||Na3V2(PO4)3/C full cell delivers a high specific capacity of 168.5 mAh g−1 at 0.5 A g−1 and excellent feasibility for over 600 cycles long cycling. Additionally, the Na+ storage mechanisms are further revealed by ex situ X‐ray diffraction (XRD) and in situ transmission electron microscopy (TEM) techniques. A feasible channelized structural design strategy is provided that inspires new instruction into the development of novel materials with high structural stability and low volume expansion rate toward the application of other secondary batteries.

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3