Metal‐Electronegativity‐Induced, Synchronously Formed Hetero‐ and Vacancy‐Structures of Selenide Molybdenum for Non‐Aqueous Sodium‐Based Dual‐Ion Storage

Author:

Qian Kunyan1,Li Li2,Yang Dehui1,Wang Beibei1ORCID,Wang Hui3,Yuan Guanghui4,Bai Jintao1,Ma Shenghua1,Wang Gang1

Affiliation:

1. State Key Laboratory of Photon‐Technology in Western China Energy International Collaborative Center on Photoelectric Technology and Nano Functional Materials Institute of Photonics & Photon‐Technology Northwest University Xi'an 710127 P. R. China

2. Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd Yulin 719000 P. R. China

3. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education) College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China

4. Ankang University Ankang 725000 P. R. China

Abstract

AbstractSodium‐based dual‐ion batteries (SDIBs) have attracted increasing research interests in energy storage systems because of their advantages of high operating voltage and low cost. However, exploring desirable anode materials with high capacity and stable structures remains a great challenge. Here, an elaborate design is reported, starting from well‐organized MoSe2 nanorods and introducing metal‐organic frameworks, which simultaneously forms a bimetallic selenide/carbon composite with coaxial structure via electronegativity induction. By rationally adjusting the vacancy concentration and combining heterostructure engineering, the optimized MoSe2‐x/ZnSe@C as anode material for Na‐ion batteries achieves rapid electrochemical kinetics and satisfactory reversible capacities. The systematic electrochemical kinetic analyses combined with theoretical calculations further unveil the synergistic effect of Se‐vacancies and heterostructure for the enhanced sodium storage, which not only induces more reversible Na+ storage sites but also improves the pseudocapacitance and reduce charge transfer resistance, thereby providing a great contribution to accelerating reaction kinetics. Furthermore, the as‐constructed SDIB full cell based on the MoSe2‐x/ZnSe@C anode and the expanded graphite cathode demonstrates impressively excellent rate performance (131 mAh g−1 at 4.0 A g−1) and ultralong cycling life over 1000 cycles (100 mAh g−1 at 1.0 A g−1), demonstrating its practical applicability in a wide range of sodium‐based energy storage devices.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3