Bifunctional Square‐Planar NiO4 Coordination of Topotactic LaNiO2.0 Films for Efficient Oxygen Evolution Reaction

Author:

Xiao Zhifei1,Huang Haoliang2,Hu Sixia3,Weng Zhuanglin1,Huang Yuping1,Du Bing1,Zeng Xierong1,Meng Yuying4,Huang Chuanwei1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China

2. Department of Physics Southern University of Science and Technology Shenzhen Guangdong 518055 China

3. Sustech Core Research Facilities Southern University of Science and Technology of China Shenzhen Guangdong 518055 China

4. Institute of Advanced Wear & Corrosion Resistant and Functional Materials Jinan University Guangzhou 510632 China

Abstract

AbstractThe high‐efficient and low‐cost oxygen evolution reaction (OER) is decisive for applications of oxide catalysts in metal‐air batteries, electrolytic cells, and energy‐storage technologies. Delicate regulations of active surface and catalytic reaction pathway of oxide materials principally determine thermodynamic energy barrier and kinetic rate during catalytic reactions, and thus have crucial impacts on OER performance. Herein, a synergistic modulation of catalytically active surface and reaction pathway through facile topotactic transformations switching from perovskite (PV) LaNiO3.0 film to infinite‐layer (IL) LaNiO2.0 film is demonstrated, which absolutely contributes to improving OER performance. The square‐planar NiO4 coordination of IL‐LaNiO2.0 brings about more electrochemically active metal (Ni+) sites on the film surface. Meanwhile, the oxygen‐deficient driven PV‐ IL topotactic transformations lead to a reaction pathway converted from absorbate evolution mechanism to lattice‐oxygen‐mediated mechanism (LOM). The non‐concerted proton–electron transfer of LOM pathway, evidenced by the pH‐dependent OER kinetics, further boosts the OER activity of IL‐LaNiO2.0 films. These findings will advance the in‐depth understanding of catalytic mechanisms and open new possibilities for developing highly active perovskite‐derived oxide catalysts.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3