Understanding the Role of Zinc Hydroxide Sulfate and its Analogues in Mildly Acidic Aqueous Zinc Batteries: A Review

Author:

Lim Won‐Gwang1ORCID,Li Xiaolin1ORCID,Reed David1

Affiliation:

1. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99354 USA

Abstract

AbstractMildly acidic aqueous zinc batteries (AZBs) have attracted tremendous attention for grid storage applications with the expectation to tackle the issues of Li‐ion batteries on high cost and poor safety. However, the performance, particularly energy density and cycle stability of AZBs are still unsatisfactory when compared with LIBs. To help the development of AZBs, a lot of effort have been made to understand the battery reaction mechanisms and precedent microscopic and spectroscopic analyses have shown flake‐like large particles of zinc hydroxide sulfate (ZHS) and its analogues formed on the surfaces of cathodes and anodes in sulfate and other electrolyte systems during cycling. However, because of the complexity of the thermodynamics and kinetics of aqueous reactions to understand different battery conditions, controversies still exist. This article will review the roles of ZHS discussed in recent representative references aiming to shine light on the fundamental mechanisms of AZBs and pave ways to further improve the battery performance.

Funder

Pacific Northwest National Laboratory

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3