A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h‐BN and Improved Hydrogen Redox Kinetics

Author:

Kim Dong Il1,Jeong Hee Bin2,Lim Jungmoon3,Jeong Hyeong Seop2,Kim Min Kyeong1,Pak Sangyeon4,Lee Sanghyo5,An Geon‐Hyoung6ORCID,Chee Sang‐Soo7,Hong Jin Pyo18,Cha SeungNam3,Hong John2ORCID

Affiliation:

1. Department of Physics, Research Institute for Natural Science Hanyang University Seoul 04763 South Korea

2. School of Materials Science and Engineering Kookmin University Seoul 02707 South Korea

3. Department of Physics Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do 16419 South Korea

4. School of Electronic and Electrical Engineering Hongik University Seoul 04066 South Korea

5. Materials Science and Engineering Kumoh National Institute of Technology Gumi Gyeongsangbuk‐do 39177 South Korea

6. Department of Energy Engineering Gyeongsang National University Jinju Gyeongnam‐do 52725 Korea

7. Nano Convergence Materials Center Korea Institute of Ceramic Engineering and Technology (KICET) Jinju 52851 Korea

8. Division of Nano‐Scale Semiconductor Engineering Hanyang University Seoul 04763 South Korea

Abstract

Achieving high‐performance aqueous zinc‐ion batteries requires addressing the challenges associated with the stability of zinc metal anodes, particularly the formation of inhomogeneous zinc dendrites during cycling and unstable surface electrochemistry. This study introduces a practical method for scattering untreated bulk hexagonal boron nitride (h‐BN) particles onto the zinc anode surface. During cycling, stabilized zinc fills the interstices of scattered h‐BN, resulting in a more favorable (002) orientation. Consequently, zinc dendrite formation is effectively suppressed, leading to improved electrochemical stability. The zinc with scattered h‐BN in a symmetric cell configuration maintains stability 10 times longer than the bare zinc symmetric cell, lasting 500 hours. Furthermore, in a full cell configuration with α‐MnO2 cathode, increased H+ ion activity can effectively alter the major redox kinetics of cycling due to the presence of scattered h‐BN on the zinc anode. This shift in H+ ion activity lowers the overall redox potential, resulting in a discharge capacity retention of 96.1% for 300 cycles at a charge/discharge rate of 0.5 A g−1. This study highlights the crucial role of surface modification, and the innovative use of bulk h‐BN provides a practical and effective solution for improving the performance and stability.

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3