Affiliation:
1. Department of Inorganic Chemistry Faculty of Chemical Technology University of Chemistry and Technology Prague Technická 5 Prague 6 166 28 Czech Republic
2. CICECO − Aveiro Institute of Materials Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
Abstract
AbstractConsiderable improvements in the electrocatalytic activity of 2D metal phosphorous trichalcogenides (M2P2X6) have been achieved for water electrolysis, mostly with MII2[P2X6]4− as catalysts for hydrogen evolution reaction (HER). Herein, MIMIIIP2S6 (MI = Cu, Ag; MIII = Sc, V, Cr, In) are synthesized and tested for the first time as electrocatalysts in alkaline media, towards oxygen reduction reaction (ORR) and HER. AgScP2S6 follows a 4 e− pathway for the ORR at 0.74 V versus reversible hydrogen electrode; CuScP2S6 is active for HER, exhibiting an overpotential of 407 mV and a Tafel slope of 90 mV dec−1. Density functional theory models reveal that bulk AgScP2S6 and CuScP2S6 are both semiconductors with computed bandgaps of 2.42 and 2.23 eV, respectively and overall similar electronic properties. Besides composition, the largest difference in both materials is in their molecular structure, as Ag atoms sit at the midpoint of each layer alongside Sc atoms, while Cu atoms are raised to a similar height to S atoms, in the external segment of the 2D layers. This structural difference probably plays a fundamental role in the different catalytic performances of these materials. These findings show that MI(Cu, Ag) together with Sc(MIII) leads to promising achievements in MIMIIIP2S6 materials as electrocatalysts.
Funder
Grantová Agentura České Republiky
Subject
General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献